GENUINELY NONLINEAR MODELS FOR CONVECTION-DOMINATED PROBLEMS *

TRAIAN ILIESCU f

Abstract. This paper introduces a general, nonlinear subgrid-scale (SGS) model, having bounded artificial viscosity,
for the numerical simulation of convection-dominated problems. We also present a numerical comparison (error analysis and
numerical experiments) between this model and the most common SGS model of Smagorinsky, which uses a p-Laplacian
regularization. The numerical experiments for the 2-D convection-dominated convection-diffusion test problem show a clear
improvement in solution quality for the new SGS model. This improvement is consistent with the bounded amount of artificial
viscosity introduced by the new SGS model in the sharp transition regions.
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1. Introduction. One of the fundamental difficulties in the numerical study of convection-dominated
problems is that considerable information can be contained in small scales, below the level of the finest
mesh. To represent these effects on the larger scales,; different methodologies have been used in practical
calculations. These methodologies have been successfully analyzed and implemented in the linear case of
convection-diffusion problems (the streamline-diffusion method is probably the most successful in this class).
For nonlinear problems (e.g., the Navier-Stokes equations), one of the most common methodologies is to
use various subgrid-scale (SGS) models (see, e.g., [16], for a survey of these models). However, very little
rigorous mathematical analysis has been done validating the effects of these nonlinear SGS terms on the
underlying continuum model and on the discretization ultimately employed.

The goal of this paper is twofold. First, we introduce a general, nonlinear SGS model, having bounded
artificial viscosity. Then, we start a careful comparison of this new SGS model with the most common
SGS model of Smagorinsky [19], which uses a p-Laplacian regularization. Specifically, we present the error
analysis for the corresponding finite element method (FEM) discretizations of the two SGS models, as well as
numerical experiments for the 2-D convection-dominated convection-diffusion test problem with homogeneous
Dirichlet boundary conditions:

—eAu+b - Vutecu=f in Q (1.1)
u=20 on 0%, (1.2)

where Q is a polyhedral domain in IR? d=2,3),b:Q— RY,c¢: Q5 R, f:Q— R, and 0 < £ < 1. This
test problem 1s a first and essential step in a careful numerical comparison of the two SGS models, in that
there is little (if any) hope of understanding the effects of these SGS terms upon the discretization of more
general, nonlinear problems (as the Navier-Stokes equations), without studying these effects on (1.1)—(1.2),
first.

The most common approach for the discretization of the linear problem (1.1)—(1.2) is the streamline-
diffusion finite element method (SDFEM). SDFEM, introduced by Hughes and Brooks [9], and mainly
analyzed by Névert [17] and Eriksson and Johnson [6], is a great improvement of the common upwind type
methods and has been successfully implemented and tested on a wide variety of problems [10], [18]. SDFEM
stabilizes (1.1)—(1.2) in a consistent way, introducing a linear amount of artificial viscosity (AV) in the
direction of the flow, and reducing the need for extra stabilizing AV. Along these lines, a further way to
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reduce the need for extra stabilizing AV is to apply the AV locally, via a Smagorinsky-type SGS term of the
form

—V - (ph® | AV P72 V) (1.3)

added to the discretization of the left-hand side (LHS) of (1.1). In the above formula, | - | is the Euclidian
norm, h represents the meshwidth in the discretization of (1.1)—(1.2), u”* is the discretized solution, and
i, o, and p are user-specified parameters. This extra nonlinear term introduces the AV in a selective way:
it introduces a negligible amount of AV in smooth regions (where |Vu”| is small), and a stabilizing amount
of AV in the sharp transition regions (where | Vu® |~ O(h™!)). The p-Laplacian AV term (1.3) stabilizes
the discretization and also spreads the small (below the meshwidth) scales onto the computable mesh. This
p-Laplacian AV term has been used in numerous challenging numerical applications; the Smagorinsky [19]
model, which uses a p-Laplacian AV term, is one of the most popular models in the numerical simulation of
turbulent flows. However, very little rigorous analysis, mathematical or numerical, has been done validating
the corresponding continuum and discretized models (see [5], [4], [11]).

In Section 2, using the p-Laplacian’s strong monotonicity, Minty’s lemma [15], [13], and discrete inverse
Sobolev’s inequalities, we prove existence, uniqueness, max-norm stability, and a priori error estimates for
u" | the approximate solution of the discretization of (1.1)—(1.2) including the nonlinear AV term (1.3). This
analysis follows the approach used by Layton in [11] and complements the one on the pure p-Laplacian
problem [1], [2].

The p-Laplacian AV term (1.3), despite its well-known (see [11]) qualities, has the drawback of intro-
ducing an unbounded amount of AV in sharp transition regions, whereas just O(h) AV is needed. Motivated
by this drawback, we introduce in Section 3 a general, nonlinear, bounded AV term of the form

—V - (phTa(| hVu" |)Vu") (1.4)

added to the discretization of the LHS of (1.1). The parameters in (1.4) are the same as those in (1.3).
The function a(-), however, instead of being a power function (and thus unbounded) as in the p-Laplacian
AV term (1.3), is a general bounded, smooth, nonnegative, real-valued function, whose derivative is also
bounded (see Figure 1.1).

exponentially
fitted AV

smooth region 1 transition region

FiG. 1.1. The graph of a(-); the horizontal axis represents | AVu™ |.

The nonlinear AV term (1.4) introduces a bounded amount of AV in the sharp transition regions, and
almost no AV in the smooth regions.

Since the nonlinear bounded AV term (1.4) has no monotonicity properties, the error analysis for the
corresponding model is much more challenging than the one for the p-Laplacian AV model. In Section 3, we

prove existence, uniqueness, and a priori error estimates for u”, the approximate solution of the discretization
of (1.1)—=(1.2) including the nonlinear AV term (1.4).
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Numerical experiments reported in Section 4 show that, for problems exhibiting very sharp layers, the
bounded AV model shows a visible improvement in solution quality versus the p-Laplacian AV model, while
both can show a dramatic improvement over the common SDFEM method.

These numerical experiments, supported by a careful mathematical and numerical analysis, which we
begin here, make the bounded nonlinear AV SGS model a promising approach for the numerical study of
convection-dominated problems.

2. Error Analysis for the p-Laplacian AV Model. We begin by introducing the mathematical
structures needed for the numerical analysis of the p-Laplacian AV model. Let IT"(Q) denote the finite
element partition of €2 into face-to-face d-simplices (d=2,3) with meshwidth (maximum d-simplex diameter)
h. The minimum angle in Hh(Q), Omin, 18 assumed to be bounded away from zero uniformly in h. The norm
|| - || denotes the usual L?#(2) norm, and || - ||z» denotes the LF(2) norm. The norm on W~=14  the dual of
the Sobolev space Wol’p, is defined by

P
[@ll-ra = sup )
0£VEW P [IVo||Le
1
where m —|— =

Let X

= (), its norm || - ||[x := || - |l1,, and (:,-) the L?*(2) inner product. The usual weak
formulation [7],

=1.
Hg
[8], [10] of problem (1.1)—(1.2) is to find u € X satisfying
(Vu, Vo) + (b - Vu,v) + (cu,v) = (f,v) Yve X . (2.1)

We define an energy-norm associated with (2.1):

1/2

1wl == (elIvoll* + [1v]]%)

The spaces X" are associated conforming finite element spaces, X* C X, and B(:, -) represents the usual
bilinear form associated with (2.1). Specifically, for u,v € X

B(u,v) :=e(Vu, Vo) + (b Vu,v) + (cu,v) . (2.2)
Using the Riesz representation theorem, define AV : Wol’p — (Wol’p)’ by
(AV},(u),v) := ph? (| AV |)P72Vu, V) VYu,v € Wyt (2.3)

with 4 >0, ¢ >0, and p > 2.
Since AV, (-) is associated with the p-Laplacian, its monotonicity properties are documented in many
places (see, e.g., [15], [13]). We summarize them here:

(AVp (u) = AVp(v), u = v) > pCr(p)h7 72|V (u = w)|[7, (2.4)
1AV, (1) = AV (0)[lw-1.0 < pCa(p)h7* P72 72|V (w = v)Ls

where € (p) and Cs(p) are constants independent of h, 7 := max {||Vul|rs,|[Vv||zr}, and zl? + é =1.

By a coercivity argument [18], there exists a unique solution of (2.1), provided that there exists a constant
& such that

inf {c( )——(v b)(x )} a>0. (2.6)

xeN
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We now begin the study of the p-Laplacian AV model for the convection-dominated convection-diffusion
problem (1.1)-(1.2), given by

ph? (| AVu" [P=2 Vul Vo) + e(Vu", Vo) + (b - V" v) 4 (cu”,v) = (f,v) , (2.7)
Yo e Xt

b exists.

Since the above model 1s nonlinear, it is not altogether obvious that an approximate solution u
The following lemma answers this question.

LEMMA 2.1. (Existence and uniqueness of u" ) There exists a unique solution for (2.7).

Proof. The proof follows from the coercivity of the bilinear form in (2.7), the strong monotonicity (2.4)
of the p-Laplacian AV term, and Minty’s lemma [15], [13]. O

For the error analysis we will need to use discrete tools linking the L?(€2) and L (Q) norms. In particular,

most commonly used finite element spaces satisfy the following inverse inequality and Poincaré inequality :
C1h|[Vol| <ol < Col[Vell . Vo e X, (2.8)

where 4, (5 are constants independent of h.

We will also need the following LP — L? -type inverse inequality [ [11], Lemma 2.1]:

LEMMA 2.2. Let O, be the minimum angle in the triangulation and M* = {v(z) : v € C’(Q),v lre
Py(T) VT € IT"(Q)}, Py being the polynomials of degree < k. Then, there is a C = C(0min, p, k) such that
for2<p<oo,d=23, and all v € M*

IV 0llzray < CRECT |V, (2.9)

A stability result of method (2.7) with p-Laplacian regularization is given by the following lemma.
LEMMA 2.3. Ifp > d, then

h 1Kl
< = d 2.1
Il < =, an (2.10)
_odp-2 %1
"]z < CR™ =T || 115 e (2.11)

where C' is a generic constant independent of h.
Proof. Setting v = u” in (2.7), we get

ph?* =2V, + B(u", u") = (£, u) .
Using (2.6), (2.8), the above equality, and Holder’s inequality, we get

(C5 2%+ a)llu")* <[[fllllu"]], and
ph? =2 |8 < |l [V ||,

where zl? + é = 1. Therefore,

||uh||< _|2|f|| _ ’
-5+ a

which proves (2.10), and

ph”* 72|V 1 < fllw-ra
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which implies

o4p—2

IVutllee < u= 55 h™ 355 | 15T 1q -

By the Sobolev embedding theorem, we have that, for p > d,
[z < C(Q)][Vu||s.
From the above two inequalities, (2.11) now follows. O

2.1. A Priori Error Analysis. An a priori error estimate for method (2.7) is given by the following
theorem.
THEOREM 2.4. Suppose that X" satisfies estimate (2.9) and that inf, ¢ x» ||Vw||pr < C||Vu||. Then,

HCRTHP =9 (= ), + €|V (= )P+ [l — > <
¢ it { ||u—w||2+e||v<u—w>||2+||v<u—w>||2+uh0+p-2||v<u—w>||’zp+
2 W=D G (4 )3, (Va2 ) 4 2O S gy 22

where C' is a generic constant independent of h.
Proof. The error bound is proven by using Galerkin orthogonality and the monotonicity of AV, () (2.4).
First, the error equation is derived. Subtracting (2.7) from (2.1), we get

—(AV, (u"),v) + B(e,v) =0 Yve X", (2.12)

where e = u — u”. Let w € X" be arbitrary and define ¢ = w —u® € X" 5 = u— w (note that ¢ = 5+ ¢).
Adding and subtracting terms as appropriate and using the bilinearity of B(-,-), we get

(AVy (w), v) = (AV, (u"), 0) + B(¢,v) = (AV, (w), v) = (AV; (u), v)

— B(n,v) + (AV, (u),v) Yo e XP . (2.13)
Using (2.5), we also have
(AVp (u),v) = (AVp (u), ) (AV;(0),v) (2.14)
< [JAVp (w) = AV, (0)[lw—2.2 [Vl
< uCh(p )hUJ’p AVl Vel

If we set v = ¢ (since ¢ € X") and use the strong monotonicity of AV, () (2.4) and the coercivity of B(-,-) on
the LHS of (2.13), the local-Lipschitz continuity of AV, (-) (2.5) and the continuity of B(-, ) on the right-hand
side (RHS), and (2.14), we obtain

pCL(P)RT T2Vl + el VOl + allol* < nCa(p)h* =22Vl Le | Vnllr + e[ Vall[| V4]

+ uCa(p)h” 2|V ul 12V 6 e

where r = max{||Vul|rs, ||[Vw]||zr}.
Using Lemma 2.2 and the Cauchy-Schwarz inequality on the RHS yields

phT AT C )V Il + CEITOY” + Cllol* < w2 C(p)e™t 20 Ip2r 200wy 7,

+/’L20( ) —1h20+2(p 2)+d ||v ||2p 2
+ Cel [Vl + || vl?
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Since [|ur + us|ff, < C(p)([lwllf s + [|us|lt,), and 7 < C||Vu||rs at infimum, the result now follows taking
the infimum over w € X" of the above inequality and using the triangle inequality. O

REMARK 2.1. LF stability of the L? projection into finite element spaces is proven in [3].

REMARK 2.2. Theorem 2.4 also proves the convergence of u”. Indeed, since ¢ >0, p> 2, and d = 2,3,
we get?a—i—?(p—?)—l—@ > 0.

REMARK 2.3. The convergence of u" is not uniform in ¢. However, for many practical choices of the

parameters o and p, the scaling between ¢ and h is reasonable. For example, in 2-D (d = 2), for p > 3

and o > 1, we have 20 + (p — 2) (2 — 1%) > 13—0, and thus € > O(h%) in order to get convergence of u". In

3-D (d =3), forp>3 and ¢ > 1, we have 2¢ + (p — 2) (2 — 1%) > 3, and thus € > O(h3) in order to get

convergence of u”.

3. Error Analysis for the General Bounded AV Model. In this section we study the general,
bounded AV model used for the discretization of the convection-dominated convection-diffusion problem

(1.1)~(1.2):

wh? (a(] hVu" |)Vuh, V) + 6(Vuh, Vo) + (b - vu", v) + (cuh, v) = (f,v), (3.1)
Vo e X7,

We start with a very general AV model (i.e. a very general function a(-)), and then we impose restrictions
on it in order to obtain existence, uniqueness, and convergence for the solution of the discretized problem.
In particular, we prove an a priori error bound for u”, the approximate solution of (3.1).

Here ¢ > 0 and p > 0 are parameters to be determined, and a(-) is a smooth, bounded, nonnegative
function whose graph looks like that in Figure 1.1.

The shape of a(-) makes the AV term ph?(a(| hVu” |)Vu", Vo) fit the description we gave in the
introduction: the amount of AV introduced in the discretization (3.1) is negligible in the smooth regions
(where the gradient is small) and bounded where the gradient is large:

he(Vuh, Vv) | where | Vu” |~ O(h™1) |

o h |p—2 h ~
ph? (| AV P72 Vu* Vo) { RPHO=2(Tul, Vo) | where | Vu® |~ O(1) .

We now seek conditions upon a(-) and g, sufficient for the existence, uniqueness, and convergence of u”.

LemMMA 3.1. (Eristence of u") Assume that b(-) and c(-) are smooth enough functions and that (2.6) is
satisfied.

Then, provided a(-) > 0, there exists a solution to (3.1), and we have the following a priori bound:

/111

€ &
1+C3 + 1+C72h—2

[a"[ly < C(f,,h) = , (3.2)

where C1,Cs are constants independent of h.

REMARK 3.1. Condition (2.6) is a common condition that ensures eristence and uniqueness of u, the
solution of the continuous problem (2.1).

Proof. Since dim(X") < oo, existence will follow from Schauder’s fixed point theorem once we have
proven an a priori bound on any possible solution u”.

Using (2.8), we get

filk

h||2
and ||uh||2 > ||u ||1

\v4 h 2> ||U ’
|| U || - 1+Cl_2h_2

— 1+
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where (', C5 are constants independent of h.
Letting v = u” in (3.1) yields

ph? (a(] AVu" NVu", Vu") + e(Vu", Vu) + (b - V" u?) + (cu” u") = (F,u") . (3.4)
Since a(-) is nonnegative and p > 0, we have
ph? (a(] RV YVu" Vu) >0 .

Integrating by parts, using (2.6) and the above inequality on the LHS, and the Cauchy-Schwarz inequality
on the RHS of (3.4), we have

ellVul 2 + allu®* < [LAAl-ollu® ]l -

Using (3.3) in the above inequality, we get

€ &% B2 A
+ u < —1|e” |1,

which yields (3.2). Estimate (3.2) and Schauder’s fixed point theorem prove existence of u”, the solution to
(3.1). O

REMARK 3.2. Notice that for the existence of u", we did not impose any new conditions on a(-) (other
than those already imposed in the beginning of the section) or on u. Thus, any function a(-) whose graph
resembles the one in Figure 1.1 is admissible.

The following proposition proves the uniqueness of u”, with a very general condition on a(-). Note that
usually the uniqueness is proven by means of monotonicity arguments. These arguments fail in this case,
and we have to use nontrivial nonlinear variational analysis arguments [13] instead.

LEMMA 3.2. (Uniqueness of u") Assume that the conditions in Lemma 2.2 are satisfied and that

a(z)>0, Ve>0. (3.5)

Then, there exists a unique solution u® to (3.1).
Proof. Assume there are two solutions uf,u? in X”*. Subtracting the two corresponding equations, we
get
ph? (a(| AVuf NVt — a(] hVub |)Vul, Vo) 4+ e(Vul — Vul, Vo)
+(b - Vul —b-Vul v) 4 (cul —cul,v) =0 VYve X".

Letting v := u? — uf € X" integrating by parts, and using (2.6) in the above equation, we have

ph? (| AV U )Vl = a(| hVuy |) Vg, V(u) — uy) (3.6)
+e||V(uf —ug)l® + @ll(uf —ug)|* <0
The first term in the above inequality can be rewritten as

ph?
h2

Consider now the following functional:

(a(] hVu? VAV U — a(] RV uh VAV ul, BV (uf — ub)) . (3.7)
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where
A:]0,00) = R
Ax) = /x ta(t)dt .
0

Notice that

VU
dru,v :/A’ VU |)=— - VVdx
W)= [ 090 )

_ / o(| VU VU - VVdx,
Q
where dI(U,V) is the Gateaux derivative of T at U in the direction V.
Letting Uy := huy, Us := hug, and V := Uy — Ua, (3.7) reads

ph?
h2

(dI(Uy, V) = dI(Us,V))

which, by the Fundamental Theorem of Calculus, is equal to

ph? (1 d

5 /0 EdI(Uz —I—t(Ul — Uz), V)dt

ph? (1 d

= B E Cl(| V(Uz —|—t(U1 — Uz)) |)V(U2 —|—t(U1 — Uz)) -VVdxdt
0 Q

=l [ [ @@t - v ) TSRS S (0 - )T

+ Cl(| V(Uz —|—t(U1 — Uz)) |) | \YA%4 |2 dxdt

Since a'(#) > 0 V& > 0 by (3.5), and a(x) > 0 Vx> 0, the above expression is nonnegative. Thus, (3.7)
is nonnegative; nonnegativity of (3.7) and (3.6) imply

[V (= ub)l[* + & (uf = us)|* <0
Therefore, since € > 0,& > 0, and u? —ul € X* C H}(Q), we get
ult =l

O

REMARK 3.3. Note that condition (3.5) is satisfied by any function a(-) whose graph resembles the one
m Figure 1.1.

3.1. A Priori Error Analysis. In this subsection we present the a priori error analysis for the ap-
proximate solution u”. For a very general function a(-), this a priori error analysis is summarized in the
following theorem:

THEOREM 3.3. Assume that a(-) is a positive, increasing function and that b(-) and ¢(-) are continuous
on Q. Further suppose

a(z) <1, Ve>0. (3.8)
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Then, we have the following a priori estimate:

€ & . 3¢ Ky Ko
9= P = P < { (2 2 oo =P (B2 4 ) -+

— weX*h
N[,
e \e+aCih?)
where C1,Ca, K1, Ko are constants independent of h, and & is the constant given by (2.6).
Proof. Subtracting (3.1) from (2.1), and using the fact that X* C X, we get

—ph? (a(| hVu" |)Vul, Vo) 4+ e(V(u — u"), Vo) + (b - V(u —u") + c(u —u"),v) =0,
Yo e X"

Let w € X", Set e :=u—u", n=w—u, p = w—u" € X" and notice that e = ¢ — . Therefore, the above
equation reads

e(V, Vo) + (b - Vo + cp,v) = (Vn, Vo) + (b - Vi + en,v) + ph? (a(h | Vu' |)Vu', Vo) .
Setting v = ¢ yields
el[Vell® + (b - Ve +cp, ) = (Vi Vi) + (b - Vi + e, @) + ph? (a(| RV 0" [) V", V) .

Integrating by parts and using (2.6) on the LHS, and the Cauchy Schwarz inequality on the RHS, we have

€ € 1 & 1 &
eIVl +allell” < SIVall? + SITel* + <1k Zall* + Zlell + < llenll + el

™ | =

- 9
+ (W h* a(] AU DIV + 2]Vl

Notice that the functions b(-) and ¢(-) are continuous on Q (by hypothesis) and therefore bounded. Using
this remark and (3.8), we have

- € € Ky o Ko o
ellVell* + allell” < SIIVall* + —IIVsollz + =Vl + Zllell® + = nll* + 7 ll#ll?
2 & 4 & 4
1 - €
+on PR ||V ||2+Z||Vs0||2, (3.9)

where K7, K are constants independent of h. Using (2.8) and (3.5) yields

/1]
9

h
< .
Vel < o= o

Thus, (3.9) becomes
€ 24 Y2 < € 2 K 2y A2 24 pho ]| f]]=1
IV + S0P < S+ S+ e L (A

By the triangle inequality, we get

1/e 2, @ 2 3¢ 2, 2, K 2y pho |1 f 1l )
5 (5176 = 1P+ Sl 1) < 51901+ 2 pwaip+ (520 3) e+ 3 (L5000
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Notice that e = ¢ — p = u — u” does not depend on w; thus, taking the infimum on w of both sides of the
above inequality, proves the theorem. O

REMARK 3.4. The a prior1 error estimate in Theorem 3.3 gives convergence of the approrimate solution
uh to the exact solution u. The convergence is not uniform in e. However, by choosing a(-) suitably, the
discretization can be made to be exponentially fitted in all transition regions. Thus, an attempt to prove
uniform in € convergence would be legitimate in this case.

REMARK 3.5. The inequality (3.8) is satisfied by any function whose graph resembles the one in Figure
1.1, and allows us to introduce only O(h%) AV in the sharp transition regions.

Summarizing the results in this section, for any parameters g > 0 and ¢ > 0, and for any smooth
function a(-) satisfying

a(z) <1 Y& >0
/

0
0<ad(z) Ve>0,

IAIA

we proved existence, uniqueness, and convergence for the solution u” of (3.1). Notice that, although our
results hold true for a more general function a(-) satisfying the above relations, in practice we use a function
whose graph resembles the one in Figure 1.1, introducing a negligible amount of AV in the smooth regions,
and only O(h?) in the sharp transition regions.

4. Numerical Experiments. In this section we present numerical tests for the SDFEM method, the
p-Laplacian AV SGS method, and the bounded AV SGS method. All three methods are applied to two
challenging problems with sharp layers. These problems are catastrophically structurally unstable (small
perturbations in the data result in dramatic unphysical oscillations, overshooting, and undershooting in the
approximate solution), a characteristic feature of more general nonlinear flows (e.g., turbulent flows).

The boundary value problem (1.1)—(1.2) is solved on the unit square £ = (0,1) x (0, 1) by using a finite
element discretization with conforming piecewise linears on a uniform mesh of isosceles right-angled trian-
gles, with meshwidth h. However, the same qualitative results have been obtained when using conforming
piecewise quadratics. The nonlinear problems (2.7) and (3.1) were solved by using a Picard-type iterative
process (at each iteration we lagged the nonlinear term). All the matrices and the corresponding right-hand
sides were assembled by using a second-order quadrature rule, and the resulting linear systems were solved
by using the conjugate gradient squared (CGS) method [14].

Ezxample 1. This problem is a slight modification of the one used as a benchmark in a study of non-
conforming SDFEM [10] and has as the exact solution a circular blob (see Figure 4.1) with extremely sharp
layers. We made the following parameter choices in (1.1)-(1.2): ¢ = 1073, b = (3,2), ¢ = 2. The right-hand
side and the boundary conditions were chosen such that

w(z,y) = % n arctan[1000(rZ — (a:ﬂ-— 20)? — (y — y0)?)] ’

with 2o = yo = 0.5 and ro = 0.25, be the exact solution of (1.1)—(1.2). Note that, even though our analysis
considers the homogeneous problem (1.1)—(1.2), the same analysis carries over in a straightforward way to

the nonhomogeneous case.
First, we apply the usual SDFEM method to problem (1.1)—(1.2) [18]:

e(Vu", Vu) + (b - Vu' v) + (cu”, v) + Z §(—eAu" +b - Vu" + cu” b -Vv)p = (4.1)
Tell”

(f,v)+ > 8(f,b-Vo)r, Vo € X",

Tellr
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where § is a user-specified parameter. In our calculations, we used § = h, which is probably the most popular
choice in SDFEM. Note also that, when using conforming linears, the Laplacian term Au” on the LHS of
the above relation is zero on each element 7T'.

The graph (surface plot and contour lines) of the corresponding approximation u” is given in Figure 4.2.
Note the poor solution quality: dramatic overshooting and undershooting, especially in the direction of the
flow.

Next, we apply the p-Laplacian AV SGS method (2.7) to (1.1)—(1.2). Here, we used the following values
for the user-specified parameters: g = 10, ¢ = 1, p = 3. The graph (surface plot and contour lines) of
the corresponding approximation u” is given in Figure 4.3. As expected, the approximate solution given by
the p-Laplacian AV model is more accurate than the one given by the SDFEM method, since the former
introduces a nonnegligible amount of AV only in the sharp transition layers, whereas the latter introduces
the same amount of AV everywhere. Specifically, the fact that the p-Laplacian AV model introduces AV in
a selective way (only in the sharp transition regions) is reflected in a dramatic reduction of the amount of
overshooting and undershooting and in a visible improvement in solution quality.

The last model tested is the general, bounded AV SGS model (3.1). For the user-specified parameters
we made the following choices: u = 1, ¢ = 1, a(t) = —0.001 + 1/(1 + 999 - e 1°%*). The choice of a(-)
needs explanation. As mentioned at the end of Section 3, an “admissible” function a(-) should resemble
the “S-shaped” graph in Figure 1.1 and should also introduce a nonnegligible amount of AV only where
| Vu” |~ O(h™1!). Thus, the user has to decide when exactly the gradient is “large,” that is, for what value
of [hVu"| the value of a(-) should become nonnegligible. For this test problem, our choice was motivated by
the parameter choice for the p-Laplacian AV term. For clarity, for the above parameter choices, we present
in Figure 4.4 the graph of a(-) against the graph of the corresponding term in the p-Laplacian AV term (i.e.,
10 - |RVu"]).

The graph (surface plot and contour lines) of the approximation u” of the general, bounded AV model
(3.1) is given in Figure 4.5. The solution quality is better than the one in Figure 4.3, in that the amount
of overshooting and undershooting 1s visibly decreased, whereas the contour lines are much tighter. This
increased sharpness of the layers is more obvious if we count the number of elements inside the layer in the
surface plots: roughly two elements for the exact solution (Figure 4.1), four elements for the p-Laplacian AV
SGS model (Figure 4.3), and two elements for the bounded AV SGS model (Figure 4.5). This improvement
is due to the bounded amount of AV introduced by (3.1) in the sharp transition regions, just enough to
spread the small scales on the resolvable mesh.

Since we know the exact solution, we can make more precise the above discussion and calculate the norm
of the error in the three discretizations. In Table 4.1, for different meshwidths (h = 1/16, h = 1/32, h =
1/64, h = 1/128), we present the LZ-norm of the error (denoted by ||E||z2), the energy-norm of the error
(denoted by |||E[||), the I>-norm of the undershoots (denoted by [|U|;z), and the {*norm of the overshoots
(denoted by ||O||;2). Here, the overshoots are considered the values larger than one and are calculated as
the difference from one, and the undershoots are considered the values less than zero and are calculated as
the difference from zero.

h

The most important piece of information in Table 4.1 is that the L?-norm of the error for the two
nonlinear AV models is consistently better (except for h = 1/16, when the mesh is too coarse) than the
corresponding error for the SDFEM. This improvement is quite dramatic as we refine the mesh: for h = 1/128,
the L?-norm of the error is decreased by three and four times, respectively. We have the same dramatic
improvement (one order of magnitude) in the [2-norm of the undershoots. The I2-norm of the overshoots and
the energy-norm of the error are also better for the two nonlinear AV models, even though not as dramatic.

Comparing the two nonlinear AV models, we see that the bounded AV model is consistently better. The
most dramatic improvement is in the L?-norm of the error (roughly, by 35%).

Ezample 2. This problem, known as the “skew-step” problem, is a slight modification of the benchmark
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used in [12] for the study of oscillation absorption FEM. It has steep internal and boundary layers, which
make it numerically unstable. In (1.1)-(1.2), we made the following parameter choices: ¢ = 1073, b(z,y) =
(cosB(1 —cos @ z),sinf(1 —sinf y)), 6 = 0.8, ¢ =0, f = 0. The homogeneous boundary conditions (1.2)
were changed to u(z,y) = g(x,y) on IQ, where g(x,y) = 1, if 12y — bz > 0.3, g(x,y) = 0 otherwise. Note
that V- b = —1, so that condition (2.6) is satisfied.

First, as in Example 1, we apply the usual SDFEM method (4.1) to (1.1)—(1.2), with 6 = h. Next, we
apply the p-Laplacian AV SGS method (2.7) to (1.1)—(1.2), with £ = 0.1, ¢ = 1, p = 3. Finally, we apply
the bounded AV SGS model (3.1), with u = 0.3, ¢ =1, a(t) = —0.02+ 1/(14+49 - e=>7t). The parameter
choices for the two nonlinear AV methods have the same motivation as the corresponding ones in Example
1.

The numerical results corresponding to the three discretizations are summarized in Table 4.2. For
different meshwidths (h = 1/16, h = 1/32, h = 1/64, h = 1/128), Table 4.2 presents the {*-norm of the
error away from the layers (denoted by ||E||;2), the {*-norm of the undershoots (denoted by ||U||;2), and the
[2-norm of the overshoots (denoted by ||O];z). The overshoots and undershoots are calculated the same way
as in Example 1. The error away from the layers is calculated as the difference from 1 on the subdomain
y > x4 0.15 and as the difference from 0 on the subdomain y < z — 0.15 and 0.15 <z < 0.9.

The numerical results in Table 4.2 are consistent with the corresponding ones in Table 4.1. Indeed,
the {2-norm of the overshoots and the {?>-norm of the undershoots for the two nonlinear AV methods are
consistently better than the corresponding errors for the SDFEM: as we refine the mesh, the [>-norm of the
overshoots is decreased by approximately three and four times. The {?-norm of the error away from the
layers is usually better for the two nonlinear AV methods as well, except for h = 1/16, when the mesh is too
coarse, and h = 1/128. However, since we do not know the exact solution for our test problem, we can only
make rough approximations of the error. Comparing the two nonlinear AV models; we see that the bounded
AV model is consistently better.

Fi1G. 4.1. Ezample 1, the exact solution: surface plot and contour lines; h = 1/64.
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FiG. 4.2. Example 1, the usual SDFEM method: surface plot and contour lines; § = h, h = 1/64. Note the poor solution

quality (smearing, overshooting, and undershooting).

FiG. 4.3. Ezample 1, the p-Laplacian AV SGS method: surface plot and contour lines; 4 =10, o =1, p=3, h = 1/64.
Note the dramatic improvement in solution quality over Figure 4.2 (much smaller overshooting and undershooting).
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F1a. 4.4. The graphs of a(|AVu?|) and 10 - |AVuP|; the horizontal axis represents | hVu™ |.

Fi1G. 4.5. Evample 1, the improved AV §GS method: surface plot and contour lines; u =1, ¢ =1, a(t) = —0.0014+1/(1+4+
999 . ¢7100t) b = 1/64. Note the visible improvement over Figure 4.3 (sharper layer, less undershooting).
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TABLE 4.1
FEzample 1, norms of the errors for the three different discretizations.
undershoots, and “O” represents the overshoots.

“E” represents the error,

h Norm | SDFEM | p-Laplacian AV | Bounded AV
1/16 [|E|| Lz 29740 .3284-0 .2494-0
[[|E|] .4644-0 49640 .4454-0
[[U];2 24140 16440 17840
[|O]];2 .0104-0 .000+0 .0254-0
1/32 [|E|| Lz 23140 20740 16140
[[|E|] .3594-0 35340 33740
[[U];2 14240 .503-1 .664-1
[|O]1;2 .391-2 .0004-0 .993-2
1/64 [|E|| Lz .2344-0 12640 901-1
[[|E|] 39140 37540 .3504-0
[[U];2 .2064-0 .354-1 281-1
[|O]];2 311-1 .194-1 .333-1
1/128 | ||E]||z- .2254-0 .750-1 bl11-1
[[|E|] .3294-0 29740 .2654-0
[[U];2 .2064-0 A77-1 144-1
[|O]];2 A72-3 .0004-0 .560-3
TABLE 4.2

15

“U” represents the

FEzample 2, norms of the errors for the three different discretizations. “E” represents the error away from the layers, “U”
represents the undershoots, and “O” represents the overshoots.

h Norm | SDFEM | p-Laplacian AV | Bounded AV
1/16 [|E]];2 A17-1 .735-2 138-1
[[U];2 .269-1 .542-2 126-1
[|O]];2 T87-2 .485-2 .5T76-2
1/32 [|E||;2 .765-2 .368-2 .325-2
[[U];2 .185-1 139-1 141-1
[|O]];2 .506-2 .199-2 .207-2
1/64 | ||E||;2 A71-2 129-2 .100-2
[[U];2 .444-2 A412-2 .374-2
[|O]];2 174-2 437-3 434-3
1/128 | ||E||;2 .732-3 .883-3 817-3
[[U];2 133-2 .964-3 .147-3
[|O]];2 .284-3 .5b1-4 .540-4
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5. Conclusions. We presented two nonlinear AV models (a p-Laplacian AV model and a general,
bounded AV model) for the numerical simulation of convection-dominated convection-diffusion problems.
We started with a careful mathematical (existence, uniqueness) and numerical (a priori error estimates)
analysis of the two models. Then, we tested these two models and the classical SDFEM method on two
challenging problems with very sharp layers. The numerical results showed a dramatic improvement in
solution quality for the two nonlinear AV models over the SDFEM. The best solution quality was obtained
for the bounded nonlinear AV model. These results make the bounded nonlinear AV SGS model a promising
approach for the numerical study of convection-dominated problems.
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